728x90
반응형
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
import numpy as np
import pandas as pd
GENDER_FILE_PATH = './datasets/gender.csv'
# 데이터 셋을 가지고 온다
gender_df = pd.read_csv(GENDER_FILE_PATH)
X = pd.get_dummies(gender_df.drop(['Gender'], axis=1)) # 입력 변수를 one-hot encode한다
y = gender_df[['Gender']].values.ravel()
# 여기에 코드를 작성하세요
lr = LogisticRegression(solver='saga', max_iter=2000)
k_fold_score = np.average(cross_val_score(lr, X, y, cv=5))
# 테스트 코드
k_fold_score
728x90
반응형
'이론공부 > 머신러닝' 카테고리의 다른 글
데이터 전처리: feature scaling (0) | 2024.04.04 |
---|---|
앙상블-결정트리, bagging (RandomForest), boosting (Adaboost) (0) | 2024.04.03 |
결정 트리, gini impurity, (0) | 2024.04.01 |
LASSO, grid search (0) | 2024.04.01 |
Multi-Arm Bandit (0) | 2023.04.03 |